大模型对文本内容分类的优势在于强语义理解能力与小样本学习能力。也就是说其不需要样本或需要少量样本学习即可具备强文本分类能力。而这与通过大量语料训练的垂域模型相比,在开发成本与性能上更具优势。比如,互联网社交媒体每天产生大量文本数据,商家通过分析文本数据评估对于公众对于产品的反馈,政府通过分析平台数据评估公众对于政策、事件的态度。与小模型相比,大模型在开发周期、模型性能更具优势。阿里巴巴达摩院&南洋理工&港中文的一篇验证性文章《Sentiment Analysis in the Era of Large Language Models: A Reality Check 》,也验证了大模型在文本情感分析中相对于小模型的优势。